R M 8 2 K

Author: d | 2025-04-23

★★★★☆ (4.7 / 3553 reviews)

Download tv show icon pack 19

Then there are unique integers q q q and r r r with 0 Let m = 2 k 4 4 k 3 k 2 k m=2k^44k^3k^2k m = 2 k 4 4 k 3 k 2 k. n 4 = 8 m 1 n^4=8m1 n 4 = 8 that: n = 2 K/m - (r^2)/(4m^2) = (K/m)1 - (K/m)(m/K)(r^2)/(4m^2) [here I rewrote each term with (K/m) as a factor] [here I canceled an m] = (K/m)[1 - (r^2)/(4mK)] [here I multiplied the

free toefl practice test

$ sum_{k=1}^m k(k-1){m choose k} = m(m-1) 2^{m-2}$

Ëj…°%˘&³j†°%˘&³j‡°%˰%Ëjˆ�Rx :j‰�Rx :jŠ�R�Rj‹° R˜ :jŒ° R˜ :j�° R° RjŽi RQ :j�i RQ :j�i Ri Rj‘� Ri :j’� Ri :j“� R� Rj”&!R":j•&!R":j–&!R&!Rj—F"R.#:j˜F"R.#:j™F"RF"Rjšc#PK$8j›c#PK$8jœc#Pc#Pj�~$Pf%8jž~$Pf%8jŸ~$P~$Pj °y)j¡°y)j¢°°j£÷ÓpLj¤÷ÓpLj¥÷Ó÷Ój¦ðãi\j§ðãi\j¨ðãðãj©À°9)jªÀ°9)j«À°À°j¬·Ó0Lj­·Ó0Lj®·Ó·Ój¯°ã)\j°°ã)\j±°ã°ãj²ÔyMj³ÔyMj´ÔÔjµ÷÷pp j¶÷÷pp j·÷÷÷÷j¸ð i€ j¹ð i€ jºð ð j»ÀÔ9Mj¼ÀÔ9Mj½ÀÔÀÔj¾·÷0p j¿·÷0p jÀ·÷·÷jÁ° )€ j° )€ jð ° jÄm%yæ&jÅm%yæ&jÆm%m%jÇ÷�'p )jÈ÷�'p )jÉ÷�'÷�'jÊð )i+jËð )i+jÌð )ð )jÍÀm%9æ&jÎÀm%9æ&jÏÀm%Àm%jз�'0 )jÑ·�'0 )jÒ·�'·�'jÓ° ))+jÔ° ))+jÕ° )° )jÖ:0y³1j×:0y³1jØ:0:0jÙ÷]2pÖ3jÚ÷]2pÖ3jÛ÷]2÷]2jÜðm4iæ5jÝðm4iæ5jÞðm4ðm4jßÀ:09³1jàÀ:09³1jáÀ:0À:0jâ·]20Ö3jã·]20Ö3jä·]2·]2jå°m4)æ5jæ°m4)æ5jç°m4°m4jè}+M¢,¹Aj@é0*h.ÕAjêíõjëÇ€)ÇjìW€)Wjí�Ëx ³jî�Ëx ³jï�Ë�Ëjð Ëø ³jñ Ëø ³jò Ë Ëjó°%˘&³jô°%˘&³jõ°%˰%Ëjö�Rx :j÷�Rx :jø�R�Rjù° R˜ :jú° R˜ :jû° R° Rjüi RQ :jýi RQ :jþi Ri Rjÿ� Ri :j� Ri :j� R� Rj&!R":j&!R":j&!R&!RjF"R.#:jF"R.#:jF"RF"Rjc#PK$8j c#PK$8jc#Pc#Pj ~$Pf%8j ~$Pf%8j~$P~$Pj#‰y$j#‰y$j##j#%€œ&j#%€œ&j#%#%j3'y¬(j3'y¬(j3'3'jÐ#Iy$jÐ#Iy$jÐ#Ð#jÇ#%@œ&jÇ#%@œ&j Ç#%Ç#%j À3'9¬(j À3'9¬(j À3'À3'j  `™Ùj! `™Ùj" ` `j#ƒ�üj$ƒ�üj%ƒƒj&“ ‰ j'“ ‰ j(“ “ j)à`YÙj*à`YÙj+à`à`j,׃Püj-׃Püj.׃׃j/Г I j0Г I j1Г Г j2 ô™mj3 ô™mj4 ô ôj5��j6��j7j8'‰ j9'‰ j:''j;àôYmj×P�j?×P�j@××jAÐ'I jBÐ'I jCÐ'Ð'jDÌ3‰E5jEÌ3‰E5jFÌ3Ì3jGï5€h7jHï5€h7jIï5ï5jJÿ7yx9jKÿ7yx9jLÿ7ÿ7jM €-™ù.jN €-™ù.jO €- €-jP£/� 1jQ£/� 1jR£/£/jS³1‰,3jT³1‰,3jU³1³1jV$]:�Õ;jW$\:�Õ;jX$\:$\:jYÔ]:MÕ;jZÔ\:MÕ;j[Ô\:Ô\:j\]:�Õ;j]\:�Õ;j^\:\:j_Ä]:=Õ;j`Ä\:=Õ;jaÄ\:Ä\:jb]:}Õ;jc\:}Õ;jd\:\:je´]:-Õ;jf´\:-Õ;jg´\:´\:jhd]:Ý Õ;jid\:Ý Õ;jjd\:d\:jk ]:� Õ;jl \:� Õ;jm \: \:jn}+M¢,¹Aj@åa|Àï}Ñ 7 7ÿ@(67Í8X@X>X€@ÿÿUnknownÿÿÿÿÿÿÿÿÿÿÿÿG �‡* €ÿTimes New RomanA �€Symbolarial3.� ‡* €ÿArial3 �‡* €ÿTimes;.� ‡* €ÿHelvetica7.�ï { @ŸCalibri3�@TungaA�Cambria Math"ˆ€Ðhã צã צ6Ó. c6Ó. c!€¥Àxxƒí6í62ƒ€×ßÿÿðÿ$Pÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿa|À2! xx ÿÿAAþÿà…ŸòùOh«‘+'³Ù0 �˜¤°¼È$ 0?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿþÿÿÿ   þÿÿÿ     !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        þÿÿÿ"#$%&'(þÿÿÿ*+,-./0þÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿ;þÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ ÀFÐñÉLçûÉ=€Dataÿÿÿÿÿÿÿÿÿÿÿÿ1Tableÿÿÿÿ WordDocumentÿÿÿÿ6SummaryInformation(ÿÿÿÿÿÿÿÿÿÿÿÿ!DocumentSummaryInformation8ÿÿÿÿÿÿÿÿ)CompObjÿÿÿÿÿÿÿÿÿÿÿÿyÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿ ÀF'Microsoft Office Word 97-2003 DocumentMSWordDocWord.Document.8ô9²q. Then there are unique integers q q q and r r r with 0 Let m = 2 k 4 4 k 3 k 2 k m=2k^44k^3k^2k m = 2 k 4 4 k 3 k 2 k. n 4 = 8 m 1 n^4=8m1 n 4 = 8 that: n = 2 K/m - (r^2)/(4m^2) = (K/m)1 - (K/m)(m/K)(r^2)/(4m^2) [here I rewrote each term with (K/m) as a factor] [here I canceled an m] = (K/m)[1 - (r^2)/(4mK)] [here I multiplied the 2 r k m cos r k m t!, ⇒ x′(0) = c 2 r k m = v0 ⇒ c2 = v0 r m k. So, x(t) = v0 r m k sin r k m t!. On the other hand, if we examine the other differential equation in-volving the delta function, and take The projection and commutativity properties are elementary corollaries of the definition: MM k /r k = M k /r k M ; P 2 = lim M 2k /r 2k = P. The third fact is also elementary: M(Pu) = M lim M k /r k 2 r 1. k 3 r 1. k 4 r 2. k 5 r 2. k 6 r 3. k 7 r 3. k 8 r 4. k 9 r 5. k 10 r 5. k 11 r ) ) ) ) ) , ` _ ) ) ) G E = ) - ` - M ) ) k @ =) a ` ) ) i B : g ; i o A C k ) l = l m w q S / 5 P 3 R w 8 0 R . q 0 7 Q . 7 8 P . 5 3 P R . 5 P 2 d 3 /) ) { B f G ~ F ) A C F ) N _ ) B : ' ) B : ] x) ) ) ) ) a ` _ ) ) ) G E = ) M - ` - M ) ) k @ =) a ` ) i B : g ; i o A C k ) l = l m 3 R 1 5 3 P R . 8 3 8 3 / %PDF-1.4 % 5 0 obj stream xœ [ r ‘_ 7ƒU 2 K^R 8 $eW k ` a%Q f)i m` ˜ ) %[Ukp0žž { Ÿ I ˆ.nW A particle of mass m is moving in a horizontal circle of radius r, under a centripetal force equal to -(k / r^2) where k is constant. The total energy of the particle is (a) -(k)/(r) (b) -(k)/(2 r) (c) (k)/(2 r) (d) (2 k)/(r) 06 2:forl = 7 to 0 do3:for m = 3 to 0 do4: if the l-th bit of R 16 + m ==1 then5: R 0 ← R 0 + R 25 6:for k = 0 to 3 do7: R 8 + m + k ← R 8 + m + k ⨁ R 20 + k 8:end for9:else10:for k = 0 to 3 do11: R 24 ← R 24 ⨁ R 20 + k 12:end for13:end if14:end for15: ( R 15 , … , R 8 ) ← ( R 15 , … , R 8 ) ≪ 1 16:end for…In addition, the performance is improved further by applying Liu et al’s multiplication method to the proposed method. Seo and Kim proposed to shift 40-bit multiplicand (A) for a 64-bit multiplier, rather than shifting 64-bit accumulator. This approach reduces 29 shift instructions per 32-bit multiplication operation. However, the multiplication method suggested by Seo and Kim does not show a big difference in performance compared to the method suggested by Liu et al. According to Seo and Kim, the number of shift instructions can be reduced compare to Liu et al’s method. However, the XOR instruction goes one more operation per bit, which leads to addition of 32 more XOR instructions when calculation 40-bit multiplicand (A). Since five registers are needed to store the 40-bit multiplicand (A), one more register is required compared to the Liu et al’s technique. Liu et al.’s approach is used for multiplication and one register is saved. These spare registers are used in the Karatsuba algorithm to improve the performance. For the optimal number of register utilization, the version without using spare registers is also investigated. Currently, RISC-V introduces new architecture for future microcontrollers. The optimal register utilization can contribute to the optimal architecture design. 4.2. Karatsuba Algorithm for GHASHKaratsuba algorithm is well known asymptotically fast multiplication method and the proposed implementation also utilizes the Karatsuba algorithm for high performance.First, the multiplication is performed with lower 32-bit of 64-bit operands ( A [ 3 ∼ 0 ] , B [ 3 ∼ 0 ] )

Comments

User9536

Ëj…°%˘&³j†°%˘&³j‡°%˰%Ëjˆ�Rx :j‰�Rx :jŠ�R�Rj‹° R˜ :jŒ° R˜ :j�° R° RjŽi RQ :j�i RQ :j�i Ri Rj‘� Ri :j’� Ri :j“� R� Rj”&!R":j•&!R":j–&!R&!Rj—F"R.#:j˜F"R.#:j™F"RF"Rjšc#PK$8j›c#PK$8jœc#Pc#Pj�~$Pf%8jž~$Pf%8jŸ~$P~$Pj °y)j¡°y)j¢°°j£÷ÓpLj¤÷ÓpLj¥÷Ó÷Ój¦ðãi\j§ðãi\j¨ðãðãj©À°9)jªÀ°9)j«À°À°j¬·Ó0Lj­·Ó0Lj®·Ó·Ój¯°ã)\j°°ã)\j±°ã°ãj²ÔyMj³ÔyMj´ÔÔjµ÷÷pp j¶÷÷pp j·÷÷÷÷j¸ð i€ j¹ð i€ jºð ð j»ÀÔ9Mj¼ÀÔ9Mj½ÀÔÀÔj¾·÷0p j¿·÷0p jÀ·÷·÷jÁ° )€ j° )€ jð ° jÄm%yæ&jÅm%yæ&jÆm%m%jÇ÷�'p )jÈ÷�'p )jÉ÷�'÷�'jÊð )i+jËð )i+jÌð )ð )jÍÀm%9æ&jÎÀm%9æ&jÏÀm%Àm%jз�'0 )jÑ·�'0 )jÒ·�'·�'jÓ° ))+jÔ° ))+jÕ° )° )jÖ:0y³1j×:0y³1jØ:0:0jÙ÷]2pÖ3jÚ÷]2pÖ3jÛ÷]2÷]2jÜðm4iæ5jÝðm4iæ5jÞðm4ðm4jßÀ:09³1jàÀ:09³1jáÀ:0À:0jâ·]20Ö3jã·]20Ö3jä·]2·]2jå°m4)æ5jæ°m4)æ5jç°m4°m4jè}+M¢,¹Aj@é0*h.ÕAjêíõjëÇ€)ÇjìW€)Wjí�Ëx ³jî�Ëx ³jï�Ë�Ëjð Ëø ³jñ Ëø ³jò Ë Ëjó°%˘&³jô°%˘&³jõ°%˰%Ëjö�Rx :j÷�Rx :jø�R�Rjù° R˜ :jú° R˜ :jû° R° Rjüi RQ :jýi RQ :jþi Ri Rjÿ� Ri :j� Ri :j� R� Rj&!R":j&!R":j&!R&!RjF"R.#:jF"R.#:jF"RF"Rjc#PK$8j c#PK$8jc#Pc#Pj ~$Pf%8j ~$Pf%8j~$P~$Pj#‰y$j#‰y$j##j#%€œ&j#%€œ&j#%#%j3'y¬(j3'y¬(j3'3'jÐ#Iy$jÐ#Iy$jÐ#Ð#jÇ#%@œ&jÇ#%@œ&j Ç#%Ç#%j À3'9¬(j À3'9¬(j À3'À3'j  `™Ùj! `™Ùj" ` `j#ƒ�üj$ƒ�üj%ƒƒj&“ ‰ j'“ ‰ j(“ “ j)à`YÙj*à`YÙj+à`à`j,׃Püj-׃Püj.׃׃j/Г I j0Г I j1Г Г j2 ô™mj3 ô™mj4 ô ôj5��j6��j7j8'‰ j9'‰ j:''j;àôYmj×P�j?×P�j@××jAÐ'I jBÐ'I jCÐ'Ð'jDÌ3‰E5jEÌ3‰E5jFÌ3Ì3jGï5€h7jHï5€h7jIï5ï5jJÿ7yx9jKÿ7yx9jLÿ7ÿ7jM €-™ù.jN €-™ù.jO €- €-jP£/� 1jQ£/� 1jR£/£/jS³1‰,3jT³1‰,3jU³1³1jV$]:�Õ;jW$\:�Õ;jX$\:$\:jYÔ]:MÕ;jZÔ\:MÕ;j[Ô\:Ô\:j\]:�Õ;j]\:�Õ;j^\:\:j_Ä]:=Õ;j`Ä\:=Õ;jaÄ\:Ä\:jb]:}Õ;jc\:}Õ;jd\:\:je´]:-Õ;jf´\:-Õ;jg´\:´\:jhd]:Ý Õ;jid\:Ý Õ;jjd\:d\:jk ]:� Õ;jl \:� Õ;jm \: \:jn}+M¢,¹Aj@åa|Àï}Ñ 7 7ÿ@(67Í8X@X>X€@ÿÿUnknownÿÿÿÿÿÿÿÿÿÿÿÿG �‡* €ÿTimes New RomanA �€Symbolarial3.� ‡* €ÿArial3 �‡* €ÿTimes;.� ‡* €ÿHelvetica7.�ï { @ŸCalibri3�@TungaA�Cambria Math"ˆ€Ðhã צã צ6Ó. c6Ó. c!€¥Àxxƒí6í62ƒ€×ßÿÿðÿ$Pÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿa|À2! xx ÿÿAAþÿà…ŸòùOh«‘+'³Ù0 �˜¤°¼È$ 0?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿþÿÿÿ   þÿÿÿ     !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ        þÿÿÿ"#$%&'(þÿÿÿ*+,-./0þÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿýÿÿÿ;þÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ ÀFÐñÉLçûÉ=€Dataÿÿÿÿÿÿÿÿÿÿÿÿ1Tableÿÿÿÿ WordDocumentÿÿÿÿ6SummaryInformation(ÿÿÿÿÿÿÿÿÿÿÿÿ!DocumentSummaryInformation8ÿÿÿÿÿÿÿÿ)CompObjÿÿÿÿÿÿÿÿÿÿÿÿyÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿ ÀF'Microsoft Office Word 97-2003 DocumentMSWordDocWord.Document.8ô9²q

2025-03-27
User3492

06 2:forl = 7 to 0 do3:for m = 3 to 0 do4: if the l-th bit of R 16 + m ==1 then5: R 0 ← R 0 + R 25 6:for k = 0 to 3 do7: R 8 + m + k ← R 8 + m + k ⨁ R 20 + k 8:end for9:else10:for k = 0 to 3 do11: R 24 ← R 24 ⨁ R 20 + k 12:end for13:end if14:end for15: ( R 15 , … , R 8 ) ← ( R 15 , … , R 8 ) ≪ 1 16:end for…In addition, the performance is improved further by applying Liu et al’s multiplication method to the proposed method. Seo and Kim proposed to shift 40-bit multiplicand (A) for a 64-bit multiplier, rather than shifting 64-bit accumulator. This approach reduces 29 shift instructions per 32-bit multiplication operation. However, the multiplication method suggested by Seo and Kim does not show a big difference in performance compared to the method suggested by Liu et al. According to Seo and Kim, the number of shift instructions can be reduced compare to Liu et al’s method. However, the XOR instruction goes one more operation per bit, which leads to addition of 32 more XOR instructions when calculation 40-bit multiplicand (A). Since five registers are needed to store the 40-bit multiplicand (A), one more register is required compared to the Liu et al’s technique. Liu et al.’s approach is used for multiplication and one register is saved. These spare registers are used in the Karatsuba algorithm to improve the performance. For the optimal number of register utilization, the version without using spare registers is also investigated. Currently, RISC-V introduces new architecture for future microcontrollers. The optimal register utilization can contribute to the optimal architecture design. 4.2. Karatsuba Algorithm for GHASHKaratsuba algorithm is well known asymptotically fast multiplication method and the proposed implementation also utilizes the Karatsuba algorithm for high performance.First, the multiplication is performed with lower 32-bit of 64-bit operands ( A [ 3 ∼ 0 ] , B [ 3 ∼ 0 ] )

2025-04-06
User4367

Font PROFESSIONAL. Examples of this font can be found on the font site exFont, designed by Hindro cholis, include the number of glyphs 233 characters. You can find other similar fonts, or fonts in the same family as this font right below. Font Details Downloads : 1,499 License : Free for Personal Use Preview Text Font 236 Characters Click any character to copy it to your clipboard ! ! " " # # $ $ % % & & ' ' ( ( ) ) * * + + , , - - . . / / 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 : : ; ; = = > > ? ? @ @ A A B B C C D D E E F F G G H H I I J J K K L L M M N N O O P P Q Q R R S S T T U U V V W W X X Y Y Z Z [ [ \ \ ] ] ^ ^ _ _ ` ` a a b b c c d d e e f f g g h h i i j j k k l l m m n n o o p p q q r r s s t t u u v v w w x x y y z z { { | | }

2025-03-24
User5819

Font Rockstar Extra Bold. Examples of this font can be found on the font site exFont, include the number of glyphs 127 characters. You can find other similar fonts, or fonts in the same family as this font right below. Font Details Downloads : 1,344 License : Free for Personal Use Preview Text Font 125 Characters Click any character to copy it to your clipboard ! ! " " # # $ $ % % & & ' ' ( ( ) ) * * + + , , - - . . / / 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 : : ; ; = = > > ? ? @ @ A A B B C C D D E E F F G G H H I I J J K K L L M M N N O O P P Q Q R R S S T T U U V V W W X X Y Y Z Z [ [ \ \ ] ] _ _ a a b b c c d d e e f f g g h h i i j j k k l l m m n n o o p p q q r r s s t t u u v v w w x x y y z z { { | | } } ~ ~ ¡ ¡ ¢ ¢ £ £ ¥ ¥ ¦ ¦ © © ® ® ° ° ± ± ¿ ¿ × × ÷ ÷ – – — — ‘ ‘ ’ ’ ‚ ‚ “ “ ” ” „ „ † † ‡ ‡ • • … … ‰ ‰ ⁄ ⁄ € € ™ ™ − −

2025-03-25

Add Comment